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Much effort has been spent to increase the attenuation of lined ducts at low
frequencies with only a minor increase of the blocking of the duct by thick
silencers, in order to keep the stationary flow resistance of the silencer at low
values. There exists a similar problem at high frequenices, where the attenuation
goes down at about the square of the inverse frequency as soon as the frequency
limit of ray formation is exceeded at which the free duct is about half a wavelength
wide. The principal remedy of the problem, to choose narrow ducts, would
increase the aerodynamic resistance. The ray-acoustical background of the low
attenuation at high frequencies suggests using the existing corners of the ductwork
into which the silencer is inserted for the generation of high-frequency attenuation.
A naı̈ve idea is to assume that the exciting sound ray of the inlet duct should be
absorbed by an absorber on the corner wall opposite this duct, thereby avoiding
the excitation of the outlet branch of the duct. Such a corner absorber could be
applied in wide ducts also. This paper presents theories of joints of acoustically
lined ducts with separate sound absorbers at the corner walls. The numerical
results will show that high transmission losses can indeed be achieved at high
frequencies, but the mechanism of the corner attenuation is not so much the
absorption by the corner absorber, but more the (cut-off) attenuation of higher
modes in the lined outlet branch of the duct.
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1. INTRODUCTION

High attenuation values of silencers in technical duct systems are in conflict with
the requirement of a low aerodynamic flow resistance. High attenuation at low
frequencies needs thick linings, high attenuation at high frequencies demands small
distances between the linings. A first compromise in this conflict is the use of baffle
type silencers. Many papers deal with the extension of the low frequency range
of performance of silencers with only a minor increase in the absorber thickness,
e.g., with specially designed resonator absorbers. The mirror reflected problem at
high frequencies has attracted less interest. Cremer [1] in 1953 pointed out the
principal limitation of attenuation towards higher frequencies by the limit of ray
formation, where the free duct width is about half a wavelength. The interaction
between the lining and the sound wave (the least attenuated mode) becomes weak
above that frequency; the consequence is a slope of the attenuation with about 1/f2

(f=frequency). It is generally accepted, therefore, that a high frequency end of
the performance range of a silencer is combined with narrow ducts. This too
increases the aerodynamic resistance of the silencer.
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On the other hand, the ray-acoustical explanation of the high frequency slope
of the attenuation suggests a solution of the problem. One assumes that there are
duct corners in most duct systems which contain the silencer. If a sound absorber
is placed at the duct wall opposite the duct branch with the incident sound wave,
then the sound could be effectively absorbed, just because of the ray formation
of the sound wave: i.e., with high absorption coefficients at high frequencies.
Presumably, the excitation of the outlet branch of the duct would be reduced. This
suggestion evidently takes away the high frequency sound reduction from the
silencer and places it into the duct corners.

Brittain et al. [2] reported about measurements of the transmission loss of joints
of lined ducts with different angles. Later papers about joints of ducts mainly deal
with rigid ducts, such as those of Lippert [3, 4], Hubert and Said [5], Redmore and
Mulholland [6], Bruggeman [7], and Cummings [8] treated a related problem with
his theoretical study of lined plenum chambers in ducts. The theory of section 3
below is similar to a method which Lapin [9] applied to ducts with side branches.
However, he considered only rigid ducts and branches and restricted his analysis
to the fundamental mode only in the side branch. A later paper by Lapin [10], dealt
with lined ducts, but there the analysis was reduced to a technique of equivalent
circuits. Corners and junctions of (lined) ducts often are objects for numerical
methods, such as FEM or BEM.

Two theoretical methods will be described below. The first method (in sections
2 and 3) is similar to the method applied by Lapin in that it assumes a fictitious
volume source in the end plane of one of the joining ducts which describes the
scattering of that duct into the corner region and the other duct. The task will be
to determine the amplitude of the fictitious source. Depending on where the
additional absorber of the corner is placed, the fictitious source is placed in the
end plane of either the entrance duct or of the exit duct. This method of fictitious
sources is described below, although it is an approximate method only, because
it is a continuation of the theoretical line in Lapin’s papers, and because the
computing time in numerical applications is low. The second method (in section
4) is an exact theory from its outline. It introduces two fictitious duct sections for
the corner region, which are lined with the extra absorbers in the corner, and then
proceeds essentially with standard modal analysis methods.

We start with the theoretical treatment of L-joints of lined ducts. It will be
shown in section 5 how the theory can be applied to T- and cross-joints. The
objects of the two following sections are depicted in Figure 1. Two ducts i=1, 2
which form the zones I and II join in the zone III of the corner region. The ducts
have widths 2hi and are lined with locally reacting absorbers having surface
admittances Gi . The incident sound wave pi comes from the branch i=1; it is
assumed to be the mode with mode index m of the inlet duct. In the arrangement
of Figure 1(a), the corner wall opposite the exit duct is lined with a distinct locally
reacting absorber with a surface admittance G3. In Figure 1(b) this absorber is
placed at the wall opposite the entrance duct. The system of co-ordinates x, y is
placed along the centres of the ducts. First, constant fields are assumed in the
z-direction; it will be shown in section 5 how the theory and its results have to
be modified for ducts with finite dimension in the z-direction. Although the
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Figure 1. L-joints of lined ducts with absorbers in the corner area. The arrangement (a) is the
object of section 2; the arrangement (b) is the object of section 3.

arrangement of Figure 1(b) corresponds better to the suggestion outlined above,
we begin with the arrangement of Figure 1(a); here the theory of the two following
sections is easier to describe. This arrangement is needed for a generalization to
T-joints in which the sound wave comes from the side branch.

The reason, why the absorbers here are supposed to be locally reacting is that
the relation of orthogonality of modes in ducts with locally reacting linings is much
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easier to handle than the relation of orthogonality of modes with bulk reacting
linings. A lot of experience shows that local absorbers can be used as
approximations to bulk absorbers, if the flow resistance of the latter is high
enough.

The theory of the two following sections makes use of a fictitious particle
velocity source with a distribution Vq in one of the duct ends. The sound field in
the other duct will be developed as a function of Vq . When the lateral distribution
of Vq is synthesized by modes of that duct, a linear, inhomogeneous system of
equations for the mode amplitudes is derived from the boundary conditions at the
end planes of the ducts towards zone III. The sound fields are known after the
solution of that system of equations. The theory with the auxiliary source Vq is
approximate from the outset, because only a velocity source is assumed; a
complete theory would need an additional sound pressure source. The theory can
be tested by assuming h1 = h2 and G1 =G2 =G3 in both arrangements of Figure 1,
because then the arrangements are identical to each other, but the derivations are
quite different.

Because of the approximate character of the solutions as outlined above, and
because of some restrictions of these theories in the special case of rigid duct walls
(explained in section 5) a theory based on a modal analysis of the problem is
derived in section 4. This theory is exact in the framework of a Fourier analysis:
the boundary conditions at the end planes of the ducts are satisfied in the sense
of a minimum least square error over the cross-section of these planes. The error
can be reduced by a large number of duct modes in the numerical computations.
Each of the theories described below has its own merits. The theory of section 2
has the lowest precision, but it is the fastest in numerical computations. The theory
of section 3 has a better precision, but the computing time is about twice as long
as in section 2. The theory of section 4 with the modal analysis has the best
precision and the highest generality; its computing time is again increased by a
factor of two. Both a critical inspection of the results of the theories with the
auxiliary source Vq , and the comparison to results of the modal analysis show that
the errors of the first theories are in the near fields of the transition planes. Only
the far field in the exit duct is important in most technical applications, where the
near fields have decayed and the least attenuated mode will prevail. The results
are good under these conditions, so the methods of sections 2 and 3 can be
applied for the computation of the transmission loss of the duct joint which is
based on the level difference of the least attenuated mode in the exit duct (at the
entrance plane of the duct) to the incident mode (at the exit plane of the entrance
duct).

2. L-JOINT WITH ABSORBER OPPOSITE THE EXIT DUCT

Quantities in the two ducts i=1, 2 are indicated by i appended to the quantity
(with the exception of the incident wave pi ). The incident wave pi (x, y) generates
a reflected wave pr (y, y) which in this section is assumed to be generated at the
exit plane of the entrance duct. A transmitted wave pt (x, y) will be generated in
zone II of the exit duct. The field ps (x, y) in the corner area of zone III is called
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the ‘‘scattered field’’. The superposition pi + pr will produce a velocity distribution
Vq (x0, y0) in the exit plane y0 =−h2, x0 = (−h1, h1) of the entrance duct. Vq is
assumed to be the source of ps and pt . First, the fields ps and pt are formulated
as functions of Vq . Then pr is synthesized by modes of the entrance duct, with mode
amplitudes Am . These amplitudes are introduced into Vq by the boundary
condition for the velocity Vq (x0, y0)= viy (x0 + y0)+ vry (x0, y0). Finally, the
pressure boundary condition pi (x0, y0)+ pr (x0, y0)= ps (x0, y0) will give the desired
system of equations for the Am . All sound fields will be known after the solution
of that system of equations.

The sound fields in both ducts (with a time factor ejvt) are composed by duct
modes with the shapes

qik (hi ) e2gikji, i=1, 2, k=0, 1, 2, . . . . , hi =6x, i=1
y, i=27, ji =6y, i=1

x, i=27.
(1)

The mode profiles for modes which are symmetrical or antisymmetrical with
respect to the duct centres respectively are

qik (hi )=6cos (oikhi ),
sin (oikhi ),

k=0, 2, 4, . . .
k=1, 3, 5, . . .7. (2)

One is free to identify qik (hi )0 qik (oikhi ) when the wave number oik is shown.
Further use is made of the freedom in the enumeration of modes and even indices
are attributed to symmetrical modes and odd numbers to antisymmetrical modes.
The wave equation is satisfied if

gi2k = oi2k − k2
0 (3)

holds, and the boundary conditions at the surface of the duct lining lead to the
characteristic equations

oikhiqi'k (oikhi )=−jk0hiZ0Giqik (oikhi )=−jUiqik (oikhi ) (4)

for oikhi . The prime indicates the derivative with respect to the shown argument.
The ‘‘absorber function’’ Ui = k0hiZ0Gi has been introduced, which is the only
quantity in the characteristic equations containing information about the absorber
of the lining. k0, Z0 are the free-field wave number and the free-field wave
impedance. The relations

qik (−hi )= (−1)kqik (hi ), qi'k (−hi )= (−1)k+1qi'k (hi ),

qi'k (hi )=−j(Ui /hi )qik (hi ), qi'k (−hi )= j(−1)k(Ui /hi )qik (hi ),

qi0k (hi )=−oi2kqik (hi ). (5)

are applied several times. The first two of equations (5) contain the symmetry
relations of even and odd modes, the second two contain their characteristic
equations, and the last contains the second derivatives.
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The modes in the duct i are orthogonal to each other over the duct width with
the norms

NikM
1
2hi g

hi

−hi

qi2k (hi ) dhi =
1
2 $1+ (−1)k sin (2oikhi )

2oikhi %. (6)

With the assumed velocity source Vq (x0, y0) in the exit plane y0 =−h2,
x0 = (−h1, h1) of the entrance duct, the inhomogeneous wave equation for the
contribution dp2 of a source element dx0

(D+ k2
0 ) dp2(x, y)=−jk0Z0Vq (x0, y0) dx0 d(x− x0) d(y− y0) (7)

holds in the exit duct which now also includes zone III. If one develops d(y− y0)
by

d(y− y0)= s
n

anq2
n (y), (8)

the application of

1
2h2 g

h2

−h2

. . . q2n (y) dy (9)

immediately gives

an = q2n (y0)/2h2N2n . (10)

The contribution of the volume source element Vq (x0, y0) dx0 of the exit duct is
developed in duct modes

dp2(x, y)= s
n

Fn (x)q2n (y). (11)

This, inserted into the wave equation (7), gives

0 d2

dx2 − g22
n1Fn (x)=−jk0Z0Vq (x0, y0) dx0

q2n (y0)
2h2N2n

d(x− x0). (12)

It is known that the Green function g(x=x0) of a unit source, with the
inhomogeneous wave equation

0 d2

dx2 − g22
n1g(x=x0)=−d(x− x0), (13)

is determined such that it satisfies the homogeneous wave equation and the
boundary conditions so that g(x=x0) is continuous at x0, but the derivatives from
both sides have a unit difference:

g(x0+ =x0)= g(x0− =x0),
d
dx

g(x=x0)=x0+ −
d
dx

g(x=x0)=x0− =−1. (14)



-, -,  -    815

If the exit duct were infinitely long in both directions, the Green function

g(x=x0)=
1

2g2n
e−g2n =x− x0= =

1
2g2n

e−g2n (x− x0), xq x0

1
2g2n

e+g2n (x− x0), xQ x0

, (15)g
G

G

F

f

would evidently satisfy all requirements. In the duct with the termination in G3

at x=−h1, there will be modes in the Green function running towards this
termination. They will be reflected there with the modal reflection factors:

rn =(jg2n /k0 +Z0G3)/(jg2n /k0 −Z0G3). (16)

If these reflections are added to expression (15), taking into account the
propagation from the source point x0 to the point of reflection at −h1 and back
to the field point x, one gets the Green function for our problem:

g(x=x0)=

1
2g2n

e−g2n (x− x0) + rn e−g2n (x+ x0 +2h1), xq x0

1
2g2n

e+g2n (x− x0) + rn e−g2n (x+ x0 +2h1), xQ x0

. (17)g
G

G

F

f
h
G

G

J

j

It can be easily checked that equation (14) is valid for this expression. So the
contribution of Vq (x0, y0) dx0 to the sound field in the exit duct is

dp2(x, y)= j
k0Z0

4
Vq (x0, y0) dx0 s

n

q2n (y0)q2n (y)
g2nh2N2n

×[e3g2n(x−x0) + rn e−g2n (x+ x0 +2h1)], 6xq x0

xQ x07. (18)

By integration of the elementary contributions the transmitted field pt in the exit
duct becomes

pt (x, y)= j
k0Z0

4
s
n

q2n (y0)q2n (y)
g2nh2N2n

e−g2nx

×$g
h1

−h1

e+g2nx0Vq (x0, y0) dx0 + rn e−2g2nh1 g
h1

−h1

× e−g2nx0Vq (x0, y0) dx0%, (19)
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and the scattered field in zone III is

ps (x, y)= j
k0Z0

4
s
n

q2n (y0)q2n (y)
g2nh2N2n

×$e−g2nx0g
x

−h1

e+g2nx0Vq (x0, y0) dx0 + rn e−2g2nh1 g
h1

−h1

× e−g2nx0Vq (x0, y0) dx01
+e+g2nx g

h1

x

e−g2nx0Vq (x0, y0) dx0%. (20)

For conciseness of the equations, the notation Vq (x0, y0):Vq (x0) with y0 =−h2

and the integrals

IAn (x)=
j

2h1 g
x

−h1

e+g2nx0Vq (x0) dx0, IBn (x)=
j

2h1 g
h1

x

e−g2nx0Vq (x0) dx0.

(21, 22)

are introduced. Then one gets

pt (x, y)=
k0Z0

2
h1

h2
s
n

q2n (y0)q2n (y)
g2nN2n

e−g2nx[IAn (h1)+ rn e−2g2nh1IBn (−h1)], (23)

ps (x, y)=
k0Z0

2
h1

h2
s
n

q2n (y0)q2n (y)
g2nN2n

×[e−g2nx(IAn (x)+ rn e−2g2nh1IBn (−h1)+ e+g2nxIBn (x)]. (24)

With the reflected field pr written as a mode sum, the field in the entrance duct
is

pI (x, y)= pi (x, y)+ pr (x, y)=Piq1m (x) e−g1my + s
m

Amq1m (x) e+g1my. (25)

One evidently has Vq (x0)= vIy (x, −h2) and therefore

Vq (x0)=
j

k0Z0
s
m

[Amg1m e−g1mh2 − dm,mPig1m e+g1mh2]q1m (x0)

=
j

k0Z0
s
m

g1mCm− q1m (x0), (26)
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where the abbreviation

Cm2 =Am e−g1mh2 2 dm,mPi e+g1mh2 (27)

has been introduced and the Kronecker symbol dm,m . Recall that the boundary
condition for the particle velocity at the end plane of the entrance duct is satisfied
by the above formulation of the auxiliary source Vq . The boundary conditions at
the entrance plane of the exit duct are also satisfied, because ps = pt in that plane
and also 1ps /1x= 1pt /1x, as can be easily seen from equations (23) and (24). The
remaining boundary condition for the sound pressure ps (x, −h2) =

!
pI (x, −h2)

now reads (the sign =
!

indicates that it is a requirement introduced by the
boundary condition; it is continuous in x, and it shall be transformed into a system
of equations for the unknown amplitudes):

s
m

Cm+ q1m (x) =
! j

2
h1

h2
s
m

g1mCm−

× s
n

q22
n (h2)

g2nN2n
[e−g2nx(IAm,n (x)+ rn e−2g2nh1IBm,n (−h1))

+ e+g2nxIBm,n (x)], (28)

wherein the following integrals appear,

IAm,n (x)= Iam,n (x)− Iam,n (−h1), IBm,n (x)= Ibm,n (h1)− Ibm,n (x), (29a)

with

Iam,n (x)=
1

2h1 g
x

e+g2nyq1m (y) dy=
eg2nx

2h1(g22
n + e12

m )
[g2nq1m (x)− q1'm (x)],

Ibm,n (x)=
1

2h1 g
x

e−g2nyq1m (y) dy=
−e−g2nx

2h1(g22
n + e12

m )
[g2nq1m (x)+ q1'm (x)].

(29b)
The orthogonality integral operator

1
2h1 g

h1

−h1

. . . q1k (y) dy, (30)

is applied to both sides of equation (28). The left-side will give Ck+ N1k . The first
and third term in the brackets of the right-side will give

1
2h1 g

h1

−h1

e−g2nxIAm,n (x)q1k (x) dx+
1

2h1 g
h1

−h1

e+g2nxIBm,n (x)q1k (x) dx

=
2dm,kg2nN1k

2h1(g22
n + e12

m )
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− Ibm,n (h1)
1

2h1 g
h1

−h1

e+g2nxq1k (x) dx− Iam,n (−h1)
1

2h1 g
h1

−h1

e−g2nxq1k (x) dx

=
2dm,kg2nN1k

2h1(g22
n + o12

m )

− Ibm,n (h1)(Iak,n (h1)− Iak,n (−h1))− Iam,n (−h1)(Ibk,n (h1)− Ibk,n (−h1)), (31)

with

Ibm,n (h1)(Iak,n (h1)− Iak,n (−h1))

=
−q1m (h1)q1k (h)

4h4
1 (g22

n + o12
m )(g22

n + o12
k )

[g2nh1 − jU1]

× [g2nh1(1− (−1)k e−2g2nh1)+ jU1(1+ (−1)k e−2g2nh1)], (32a)

Iam,n (−h1)(Ibk,n (h1)− Ibk,n (−h1))

=
(−1)mq1m (h1)q1k (h1)

4h4
1 (g22

n + o12
m )(g22

n + o12
k )

[g2nh1 − jU1]

× [g2nh1((−1)k −e−2g1nh1)+ jU1((−1)k +e−2g2nh1)]. (32b)

The second term [ . . . ] on the right-side of equation (28) will produce IBk,n (−h1).
It is a great advantage that terms containing integrals over q1'm (x)q1k (x)
compensate each other. After some simple but lengthy manipulations one arrives
at a linear, inhomogeneous system of equations (k=0, 1, 2, . . .) for the
amplitudes Am ,

s
m

Am6−dm,k e−g1kh2N1k +
j
2

g1mh1 e−g1mh2 s
n

q22
n (h2)

g2nh2N2n
[ . . . ]m,n7

=Pi e+g1mh26dk,mN1m +
j
2

g1mh1 s
n

q22
n (h2)

g2nh2N2n
[ . . . ]m,n7, (33)

with the abbreviation

[ . . . ]m,n = dm,k
g2nh2N1k

h1h2(g22
n + o12

m )
+

q1m (h1)q1k (h1)
4h4

1 (g22
n + o12

m )(g22
n + o12

k)

× [(jU1 + g2nh1)+ (jU1 − g2nh1)(−1)k e−2g2nh1]

× {(1− (−1)m+ k)(g2nh1 − jU1)+ rn (−1)m+ k

×[(jU1 + g2nh1)+ (jU1 − g2nh1)(−1)m e−2g2nh1]}, (34)

and the Kronecker symbol dm,k . The replacement m:m is applied in this term on
the right-side of equation (33). With the solutions Am from equation (33), pr (x, y)
is computed from equation (25), Vq (x0) from equation (26) and then pt (x, y) and
ps (x, y) from equations (23) and (24). All sound fields are known after that; the
analytical task is solved. It is important to note for numerical computations that
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the mode indices m (for the entrance duct) and n (for the exit duct) run over
symmetrical and antisymmetrical modes. This is plausible, because the corner area
is not symmetrical with respect to its central planes.

The final quantity for practical applications mostly will be the transmission loss
of the corner. One could define it by the ratio of the effective transmitted power
to the incident power, both computed in the respective end planes of the corner
area. We shall see below in the numerical examples, however, that an important
contribution—if not the most important contribution—to the transmission loss of
the corner is localized behind the corner where the higher modes of the near field
in the exit duct decay. It is, therefore, reasonable to measure the effect of the corner
outside the near field zone: i.e., where only the least attenuated mode of the exit
duct will remain. A good measure for the transmission loss of the duct corner,
therefore, is the level difference of the least attenuated modes of both ducts, both
levels measured at (or extrapolated to) the end planes of the ducts. But it shall
be seen also that this measure becomes irrelevant, when the exit duct is rigid. Then
the sum of the powers of the propagating modes in the exit duct should be applied.

The special situation of identical ducts, G1 =G2 =G3 =G and h1 = h2, does not
lead to important simplifications in the computation, except that only one set of
duct modes needs to be computed. In the numerical examples below, ducts are
taken as ‘‘reference objects’’ with h1 = h2 =0·2 m, coated by layers of (locally
reacting) mineral fibre absorbers d1 = d2 =0·1 m thick, with a flow resistivity of
the porous absorber J1 =J2 =10 kPa s/m2. The thickness and/or resistivity will

Figure 2. 3D-plot of the sound pressure level in an L-joint of lined ducts according to Figure 1(a);
at f=500 Hz. m=0, mhi =4, h1 = h2 =0·2 m, d1 = d2 =0·1 m, d3 =0·2 m, J1 =J2 =10 kPa s/m2,
J3 =15 kPa s/m2.
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be changed in some examples; the absorber layer will be covered by a resistive foil
with a normalized series impedance Zsi in other examples. The admittances of the
liners are computed by standard methods described in reference [13, Vol. II]. The
mode orders will run up to mhi , nhi in both ducts. Numerical tests have shown that
it is sufficient to take mhi = nhi =4 with the dimensions and frequencies applied
below; higher mode order limits (up to mhi = nhi =10) modify the results only in
details around the corners. Higher frequencies and/or wider ducts would need
higher upper index limits.

Figure 2 shows a 3D-plot of the sound pressure 20 lg =p(x, y)/Pi = in dB at
f=500 Hz for an arrangement as in Figure 1(a), plotted over x/H1, y/H2 with
Hi =2hi . The ducts span over the interval (−0·5, 0·5) in this representation. The
ducts and the corner region are absorbing (see the list of parameters in the
diagram). The sound field is steady (as its x-derivative) at the limit between zone
III and zone II. It is steady—within the precision of the minimum square error
principle introduced by equation (30)—also in the exit plane of the entrance duct;
however, its slope in the y-direction has a jump, whereas the y-component of the
particle velocity is steady too. This is plausible in the frame of the present theory.
The relevant y-component of the field admittance changes in the exit plane of the
entrance duct from the axial admittance of the modes in duct 1 into the lateral
admittance in the corner area, i.e., into the lateral admittance of the modes in duct
2. It is this jump of the relevant field admittance which produces the reflection
indicated by the standing wave in the entrance duct. The corresponding waviness
continues somehow into the corner area, but there it is produced by the

Figure 3. As Figure 2 but at f=1000 Hz.
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Figure 4. As Figure 2 but at f=2000 Hz.

interference of a superposition of modes. The higher modes of the corner area have
decayed in the exit duct after a distance of about 2H2; the lateral profile of the
field is then stationary, it is the profile of the least attenuated mode. In Figure 3
the ducts are the same as before, only the frequency is doubled to f=1000 Hz.
The range of the near fields in duct 2 has extended, but the least attenuated mode
is still dominant after a distance of about 2H2. In Figure 4 with a further increase
in the frequency to f=2000 Hz, the near field of the higher modes extends deeper
into duct 2 than the shown range. This is important with respect to both
measurements and application of the corner attenuation. If, for example, a splitter
silencer is placed in the exit duct within the range of higher modes, then the
excitation of that silencer will be at a still rather high level. In Figure 5 (at
f=1000 Hz), the front side wall of duct 2 is rigid, G3 =0, and the absorber of
the ducts is covered with a resistive foil with Zs2 =1, thereby reducing the
attenuation in the ducts. The level in the exit duct at the end of the diagram has
increased by about 6 dB as compared to that in Figure 3.

It was recommended above to characterize the transmission loss of the corner
by the level difference of the least attenuated modes in both ducts at the end planes
of the ducts. Figure 6 shows the sound pressure levels of these modes alone, but
with the computation for the mode amplitudes including higher modes
(f=1000 Hz, both ducts and corner area absorbing). The level jump is placed at
the exit plane of the entrance duct. This is a special feature (an artefact) of the
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present theory; the place of the jump will change over to the entrance plane of
the exit duct in the next section, and it will be distributed on both planes in the
modal analysis in section 4. It is therefore not allowed to draw from this diagram
the conclusion that the transmission loss of the corner is localized in the exit plane
of the entrance duct.

The following diagrams show frequency response curves of the transmission loss
of the corner D=−20 lg =ptn (h10)/pim (0, −h2)= dB defined by the level difference
of the least attenuated modes m, n in the ducts at their end planes. In Figure 7 with
absorbing ducts, the thickness d3 of the porous layer of the corner absorber (with
the admittance G3) is changed. A value d3 =0 indicates a rigid corner wall. The
precise value of the absorption coefficient of the corner absorber is evidently not
very important. A rigid corner wall opposite the exit duct produces some
interference variations of D corresponding to the interference pattern of the higher
modes in the corner area. Figure 8 combines some situations of the absorption
of the entrance duct and of the corner wall opposite the exit duct (this is always
absorbing). The diagram shows that there exists some flexibility in the application
of the transmission loss of a duct corner, depending on the frequency range in
which one would like to enhance the attenuation. In Figure 9, it is tried to reduce
the attenuation of the exit duct by the application of a resistive foil with a
(normalized) series impedances Zs2 on the porous absorber layer (it will be
explained in section 5 why rigid exit ducts cannot be treated by the theory of this

Figure 5. Sound pressure level in an L-joint of lined ducts according to Figure 1(a); at f=1000 Hz
as in Figure 3, but with a rigid corner wall and the absorber layer in duct 2 covered by a resistive
foil. m=0, mhi =4, h1 = h2 =0·2 m, d1 = d2 =0·1 m, d3 =0·2 m, Zs =Zs2 =1, J1 =J2 =10 kPa s/
m2.
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Figure 6. Sound pressure level in an L-joint of lined ducts according to Figure 1(a); at f=1000 Hz
as in Figure 3; however, only the level of the least attenuated mode is shown. Other parameters as
Figure 3.

section). The new feature in this diagram is the appearance of a sharp dip of the
transmission loss at the cut-on frequency of the first higher mode in the exit duct
with low attenuation. This is quite plausible when it is understood that the
transmission loss of the duct corner primarily is a matter of pattern matching of
the field pattern in the corner area to the mode pattern in the exit duct. Figure 10
finally changes the duct width ratio h1/h2 (all surfaces absorbing). It is somewhat
surprising at first glance that a narrow entrance duct produces a lower
transmission loss at high frequencies than a wider duct. The explanation for this
finding is that the number and strength of higher modes in the corner area is lower
with a narrow entrance duct than with a wide entrance duct. This again indicates
the role of the mode pattern in the corner area.

Figures 11(a, b) prepare for the comparison mentioned above between the
theories of this and the following sections (Figure 11(a) with f=1000 Hz;
Figure 11(b) with f=2000 Hz). The duct and corner linings are identical
everywhere.

3. L-JOINT WITH ABSORBER OPPOSITE THE ENTRANCE DUCT

The arrangement now will be that of Figure 1(b). It corresponds better to the
simple idea that a duct corner produces its transmission loss mainly by the
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Figure 7. Frequency curves of the loss D=20 lg =pi (0, −h2)/ptm (h1, 0)= of L-joints of lined ducts
according to Figure 1(a); for three values of the layer thickness d3 of the corner absorber.

absorption of the corner wall opposite the entrance duct. The present
system—after an exchange of the hi , Gi , i=1, 2—is reciprocal to that of the
previous section, if the incident wave comes from the duct i=2. It could be
computed therefore with the method of the previous section in combination with
the principal of reciprocity for modes in duct branches, which was formulated by
Cho [11].

Figure 8. Frequency curves of the loss D=20 lg =pi (0, −h2)/ptm (h1, 0)= of L-joints of lined ducts
according to Figure 1(a), for different combinations of the absorption of the entrance duct and the
corner absorber. Other parameters as Figure 2.
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Figure 9. Frequency curves of the loss D=20 lg =pi (0, −h2)/ptm (h1, 0)= of L-joints of lined ducts
according to Figure 1(a); the attenuation of the exit duct is reduced by resistive foils with increasing
(normalized) flow resistance ZS . Other parameters as Figure 2.

Instead of this detour through the principle of reciprocity (it would be a detour,
because the computations must be repeated for all mode orders of the incident
mode in one duct which will be used in the synthesis of the field in the reciprocal
exit duct), a direct way to a computation of the sound fields in the arrangement
of Figure 1(b) will be derived. Now assume a fictitious velocity source Vq (x0, y0)
in the entrance plane of the exit duct x0 = h1, y0 = (−h2, +h2) (Vq is positive when

Figure 10. Frequency curves of the loss D=20 lg =pi (0, −h2)/ptm (h1, 0)= of L-joints of lined ducts
according to Figure 1(a), for different widths 2h1 of the entrance duct. Other parameters as Figure 2.
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Figure 11. (a) 3D-plot of the sound pressure level in L-joints of lined ducts according to
Figure 1(a), at f=1000 Hz, with identical lining everywhere; to be compared to results of later
sections. m=0, mhi =4, h1 = h2 =0·2 m, d1 = d2 = d3 =0·1 m, J1 =J2 =J3 =10 kPa s/m2. (b) as (a)
but at f=2000 Hz.
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directed into the corner area). Start with pi + pr in composing the field in zones
I and III, with pi again the incident mode with order m from the entrance duct,
and pr now the reflection of this mode at the surface of the corner absorber with
the surface admittance G3. This would be the complete field in zones I and III,
if the lining of duct 1 (and the outer wall) would extend over the entrance plane
of the exit duct (a situation which is indicated in grey in Figure 1(b)). The opening
of duct 2 will produce an additional scattered field ps in zones I and III. It shall
be generated by a fictitious source Vq . The scattered field ps can be taken as a
function of Vq (with evident exchanges of the symbols) from the previous section.
The boundary conditions at the limit between zones I and III are satisfied by the
field pi + pr + ps . Then the boundary conditions at the entrance plane of the exit
duct can be formulated in which it is assumed that the transmitted field pt , is the
sum of modes with amplitudes Dn . This will lead to a linear, inhomogeneous
system of equations for the Dn .

The sound fields in zones I and III consist of p(x, y)= pi (x, y) +
pr (x, y)+ ps (x, y). The sound field in zone II is p(x, y)= pt (x, y). The
formulations

pi (x, y)=Piq1m (x) e−g1my,

pr (x, y)=Pirmq1m (x) e+g1m (y−2h2) =PiRmq1m (x) e+g1my,

pt (x, y)= s
n

Dnq2n (y) e−g2n (x− h1). (35)

are made. Therein

rm =(jg1m /k0 +Z0G3)/(jg1m /k0 −Z0G3) (36)

are the modal reflection factors at the surface of the corner absorber with the
surface admittance G3. Rm = rm e−2g1mh2 are the modal reflection factors ‘‘measured’’
in the co-ordinate plane y=0. The amplitudes Dn of the scattered wave are
‘‘defined’’ in the plane x= h1.

One obtains, in analogy to the previous section (see equation (18)), for the
contribution of the volume source element Vq (x0, y0) dy0 to the scattered field ps

(with x0 = h1, y0 = (−h2, +h2)),

dps (x, y)= j
k0Z0

4
Vq (x0, y0) dy0 s

m

q1m (h1)q1m (x)
g1mh1N1m

[e2g1m(y−y0) +Rm e+g1m (y+ y0)],

6yQ y0

yq y07. (37)
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The scattered field ps follows by integration:

ps (x, y)=
k0h2Z0

2
s
m

q1m (h1)q1m (x)
g1mh1N1m

×6 e+g1my[IBm (−h2)+RmIAm (h2)],
e+g1my[IBm (y)+RmIAm (h2)]+ e−g1myIAm (y),

yQ−h2

−h2 Q yQ h27, (38)

with the integrals

IAm (y)=
j

2h2 g
y

−h2

e+g1my0Vq (y0) dy0, IBm (y)=
j

2h2 g
h2

y

e−g1my0Vq (y0) dy0. (39)

The analysis up to here broadly follows the analysis of the previous section. The
main difference will be introduced by the formulation and application of the
boundary conditions in the entrance plane of the exit duct. The boundary
condition for the particle velocity (in the x-direction) is now

vtx (x0, y0) =
!

−Vq (x0, y0)+G1(pi (x0, y0)+ pr (x0, y0)). (40)

It describes the fact that Vq =0 when the lining and the outer wall of duct 1 would
cover the opening of duct 2, because then vtx is the velocity at the surface of the
lining. From equation (40) one gets by insertion of equation (35),

Vq (h1, y0)=Vq (y0)=
j

k0h2Z0
s
n

Dng2nh2q2n (y0)

+Pi
U1

k0h1Z0
q1m (h1)[e−g1my0 +Rm e+g1my0] (41)

(see equation (4) for U1). The sound pressure boundary condition
pi (x0, y0)+ pr (x0, y0)+ ps (x0, y0) =

!
pt (x0, y0) at x= x0 = h1 reads

ps (h1, y0)= s
n

Dnq2n (y0)−Piq1m (h1)[e−g1my0 +Rm e+g1my0]. (42)

If, on the other hand, one inserts Vq from equation (41) into equations (38) and
(39), the integrals IAm (y), IBm (y) take the forms

IAm (y)=Pi
jU1

k0h1Z0
q1m (h1)[I1m (y)+RmI3m (y)]+

j
k0h2Z0

s
n

Dng2nh2IAm,n (y),

IBm (y)=Pi
jU1

k0h1Z0
q1m (h1)[I2m (y)+RmI4m (y)]+

j
k0h2Z0

s
n

Dng2nh2IBm,n (y),

(43)
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with the abbreviations

IAm,n (y)M
j

2h2 g
y

−h2

e+g1my0q2n (y0) dy0MIam,n (y)− Iam,n (−h2),

IBm,n (y)M
j

2h2 g
h2

y

e−g1my0q2n (y0) dy0MIbm,n (h2)− Ibm,n (y), (44)

and the indefinite integrals

Iam,n (y)M
1

2h2 g
y

e+g1my0q2n (y0) dy0 =
eg1my

2h2(g12
m + o22

n )
[g1mq2n (y)− q2'n (y)],

Ibm,n (y)M
1

2h2 g
y

e−g1my0q2n (y0) dy0 =
−e−g1my

2h2(g12
m + o22

n )
[g1mq2n (y)+ q2'n (y)]. (45)

These become at the intervals limits (together with equation (5))

Iam,n (h2)=
eg1mh2q2n (h2)

2h2
2 (g12

m + o22
n )

[g1mh2 + jU2],

Iam,n (−h2)= (−1)n e−g1mh2q2n (h2)
2h2

2 (g12
m + o22

n )
[g1mh2 − jU2],

Ibm,n (h2)=−
e−g1mh2q2n (h2)

2h2
2 (g12

m + o22
n )

[g1mh2 − jU2]= (−1)n+1Iam,n (−h2),

Ibm,n (−h2)= (−1)n+1 eg1mh2q2n (h2)
2h2

2 (g12
m + o22

n )
[g1mh2 + jU2]= (−1)n+1Iam,n (h2). (46)

The other integrals in equation (43),

I1m (y)M
1

2h2 g
y

−h2

e(g1m − g1m )y0 dy0, I3m (y)M
1

2h2 g
y

−h2

e(g1m + g1m )y0 dy0,

I2m (y)M
1

2h2 g
h2

y

e−(g1m + g1m )y0 dy0, I4m (y)M
1

2h2 g
h2

y

e−(g1m − g1m )y0 dy0, (47)

can be easily evaluated. It should be mentioned only that I1m , I4m for m= m have
the limit values

I1m (y)= 1
2(1+ y/h2), I4m (y)= 1

2(1− y/h2). (48)
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After these preparations ps in zone I can be written as

ps (x, y)= 1
2 s

m

q1m (h1)q1m (x)
g1mh1N1m

e+g1my

×6PiU1
h2

h1
q1m (h1)$(1+RmRm )

sinh ((g1m + g1m )h2)
(g1m + g1m )h2

+ (Rm +Rm )
sinh ((g1m − g1m )h2)

(g1m − g1m )h2 %
+j s

n

Dng2nh2((−1)n +Rm )(Iam,n (h2)− Iam,n (−h2))7, (49a)

and ps in zone III as:

ps (x, y)= 1
2 s

m

q1m (h1)q1m (x)
g1mh1N1m

×6PiU1
h2

h1
q1m (h1)[[e+g1my[I2m (y)+Rm (I1m (h2)+RmI3m (h2))

+RmI4m (y)]+ e−g1my[I1m (y)+RmI3m (y)]]]

+ j s
n

Dng2nh2[[e+g1my[−Ibm,n (y)+RmIam,n (h2)− ((−1)n +Rm )

× Iam,n (−h2)]+ e−g1my[Iam,n (y)− Iam,n (−h2)]]]7. (49b)

If one introduces equation (49b) (after y:y0) into the left-side of equation (42)
and then applies on both sides the orthogonality integral operator

1
2h2 g

h2

−h2

. . . q2k (y0) dy0, (50)
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simple but longer transformations lead to the linear, inhomogeneous system of
equations (k=0, 1, 2, . . . ) for the Dn :

DkN2k −
j
2

s
n

Dng2nh2 s
m

q12
m (h1)

g1mh1N1m

×$dn,k
h2

h1

g1mh1N2k

h2
2 (g12

m + o22
k )

− Iam,n (−h2)((−1)nIAm,k (h2)+ IBm,k (−h2))

+RmIAm,n (h2)IAm,k (h2)%
=Piq1m (h1)6IBm,k (−h2)+RmIAm,k (h2)+

1
2

U1
h2

h1
s
m

q12
m (h1)

g1mh1N1m

×$$IBm,k (−h2)+RmIAm,k (h2)
2h2(g1m + g1m )

+ IAm,k (h2)$Rm (I1m (h2)+RmI3m (h2))

−
e−(g1m + g1m )h2

2h2(g1m + g1m )%−RmIBm,k (−h2)
e−(g1m + g1m )h2

2h2(g1m + g1m )

+
IBm,k (−h2)− IBm,k (−h2) e−(g1m − g1m )h2

2h2(g1m − g1m )

+Rm

IAm,k (h2)− IAm,k (h2) e−(g1m − g1m )h2

2h2(g1m − g1m ) %%7. (51)

For m:m the last two terms go over to IBm,k (−h2)/2 and RmIAm,k (h2)/2,
respectively. When the solutions Dn of this system are known, the fields pt follow
from equation (35) and ps from equation (49). The task then is solved analytically;
all fields are known. Numerical tests have shown that the upper limit mhi of the
mode orders m, n, k can be kept rather low. A limit mhi =4 is sufficient for the
frequency and duct width parameters used below. Again the numerical
computations are restricted to the (most important) case of the least attenuated
mode of duct 1 as incident wave; it is the mode m=0 for our parameters of the
ducts and linings (under some conditions, it can become the mode m=2).

The presentation of examples begins with the counterparts of Figure 11 in
Figures 12(a, b) with equal ducts and linings everywhere. The theories on which
these diagrams are based are approximate, as explained in the introduction.
Corresponding diagrams differ from each other in the near fields of the corner area
within about 22 dB. The agreement is better in the far fields in the ducts. Both
theories can thus be applied for the computation of transmission loss measures
which are defined by far fields. Figure 13 shows the transmission loss according
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Figure 12. (a) 3D-plot of the sound pressure level in L-joints of lined ducts according to
Figure 1(b), at f=1000 Hz, with identical lining everywhere; to be compared to Figure 11(a) of
section 2. Other parameters as Figure 11. (b) As (a) but at f=2000 Hz, to be compared to
Figure 11(b) of section 2.
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Figure 13. Frequency curves of the loss D=20 lg =pi (0, −h2)/ptm (h1, 0)= of L-joints of lined ducts
according to Figures 1(a) and 1(b), with identical lining everywhere, corresponding to Figures 11
and 12.

to both theories. The agreement is sufficient for high frequencies. The difference
at lower frequencies comes from the fact that there the fundamental modes in
both ducts are dominant and therefore influenced by the details of the field
matching.

A higher precision can be attributed to the results of this section. This can be
concluded from the fact that the field formulation here explicitly contains the wave
reflected at G3 and thus more information about the field structure, and this
conclusion, is supported both by a critical inspection of results from both theories
as well as from comparisons made with results of the following section.

The exit duct of Figure 14 is nearly rigid (thin absorber layer covered by a
resistive foil with high flow resistance); the corner absorber with the admittance
G3 is highly absorbent. The level values of the diagram in the exit duct indicate
only a low transmission loss of the corner as compared to absorbing exit ducts.
This should be kept in mind when in later diagrams frequency response curves of
the corner transmission loss for (nearly) rigid exit ducts will be shown; they will
indicate high losses (based on the level difference of the least attenuated modes)
with rigid exit ducts also. The solution of this discrepancy can be seen from
Figure 14: the field in the exit duct there evidently is composed mainly of higher
propagating modes. The fundamental mode is weak, giving high computational
loss values, but the real losses are low, due to the power in the propagating higher
modes. The philosophy of the transmission loss based on the least attenuated
mode loses its basis for (nearly) rigid exit ducts. The sum of the modal powers
should be applied in this case. In Figure 15, not only the exit duct is (nearly) rigid,
but also the wall opposite duct 1. The field in the exit duct here also consists of
higher modes, with a different mode mixture, however.
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Figure 14. 3D-plot of the sound pressure level in L-joints of lined ducts according to Figure 1(b),
at f=1000 Hz; the corner opposite duct 1 is highly absorbent, the exit duct is approximately rigid,
m=0, mhi =4, h1 = h2 =0·2 m, d1 =0·1 m, d2 =0·01 m, d3 =0·2 m, J1 =J2 =10 kPa s/m2,
J3 =15 kPa s/m2, ZS2 =10.

The exit duct for Figure 16 is again absorbing; the entrance duct is
approximately and the corner side exactly rigid. A strong standing wave pattern
exists in the corner area. It excites corresponding higher modes in the exit duct.
These, however, decay quickly in the near field range of this duct, so that only
the least attenuated mode on the lower level remains after a short distance from
the duct entrance. Figure 17 helps to estimate the potential effect of resonator
absorbers as coatings for the duct corner. Both ducts are absorbing, the corner
absorber is extremely soft (Z0G3 =1000). One can see the low level in front of the
absorber as a consequence of the soft reflection which compensates the incident
wave. A heuristic idea could be, that the compensation due to the soft reflection
would extend far into the corner area and thus the excitation of the exit duct
should be low. The compensation in Figure 17 is, however, effective only
immediately in front of the corner absorber, as can be seen from the low levels.
The level is again rather high in places deeper in the corner area, partially because
of the finite propagation attenuation in that area, but mainly due to the scattered
field from the exit duct.

Figure 18 contains frequency curves of the transmission loss (based on the level
difference of the least attenuated modes) for different absorption of the corner
absorber, absorbing (full line), rigid (dashed line), and soft (dash-pointed line). All
states of the corner side wall produce high values of the transmission loss at high
frequencies (with absorbing ducts). The soft wall also generates a relatively small
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Figure 15. 3D-plot of the sound pressure level in L-joints of lined ducts according to Figure 1(b),
at f=1000 Hz; the corner opposite duct 1 is rigid, the exit duct is approximately rigid. Other
parameters as Figure 14.

transmission loss at low frequencies (followed by a broad minimum at medium
frequencies); the soft compensation there is effective over a wider range in the
corner area. Figure 19 combines frequency curves of the transmission loss of
absorbing and (nearly) rigid exit ducts and for absorbing and rigid corner walls.
As it was stated above, the high values of the computed transmission loss with
rigid exit ducts are misleading; the effective transmission loss is low due to
propagating higher modes.

4. MODAL ANALYSIS OF A CORNER JOINT WITH TWO CORNER
ABSORBERS

The analytical procedure in this section shall be explained with the graph of
Figure 20. Now, two corner absorbers with the surface admittances G3, G4 at the
corner walls are assumed; G3 being opposite the exit duct, G4 opposite the entrance
duct. When the corner absorbers (and their rigid back terminations) are mirror
reflected with respect to the central planes of the ducts (indicated in grey in
Figure 20), one gets two new (fictitious) lined duct sections i=3, 4 having widths
2h3 =2h1 and 2h4 =2h2 lined with absorbers of a surface admittance G3, G4,
respectively. The modes in each of the sections are orthogonal to each other and
form a set of functions suited for the synthesis of sound pressure profiles normal
to the section axis (with the mode orders a, b below, representing symmetrical and
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Figure 16. 3D-plot of the sound pressure level in L-joints of lined ducts according to Figure 1(b),
at f=1000 Hz; the corner opposite duct 1 is rigid, the entrance duct is approximately rigid, and the
exit duct is absorbing. Other parameters as Figure 14.

anti-symmetrical modes). In each of the sections, a sum psi of forward and
backward propagating modes is assumed, where the backward running
components are generated by reflection of the forward running components at the
surface of the corner absorber which terminates the section (e.g., at G4 in the
section i=3).

The fields in the ducts and in the corner area are formulated by

PI (x, y)= pi (x, y)+ pr (x, y), PII (x, y)= pt (x, y),

PIII (x, y)= ps3(x, y)+ ps4(x, y), (52)

with the components in the forms

pi (x, y)=Piq1m (x) e−g1m (y+ h2), pr (x, y)= s
m

Amq1m (x) e+g1m (y+ h2), (53, 54)

pt (x, y)= s
n

Dnq2n (y) e−g2n (x− h1), (55)

ps3(x, y)= s
a

Baq3a (x)[e−g3a (y+ h2) +Ra e−g3a (y+ h2)], (56)
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Figure 17. 3D-plot of the sound pressure level in L-joints of lined ducts according to Figure 1(b),
at f=1000 Hz; the corner opposite duct 1 is approximately pressure release, and the ducts are
absorbing. Z0G3 =1000. Other parameters as Figure 14.

ps4(x, y)= s
b

Cbq4b (y)[e+g4b (x− h1) +Rb e−g4b (x− h1)]. (57)

The Ra,b are the modal reflection factors in the sections i=3, 4 ‘‘measured’’ in the
end planes of the ducts. They follow from the reflection factors ra,b at the
admittances by

Ra = ra e−4g3ah2, ra =
jg3a /k0 +Z0G4

jg3a /k0 −Z0G4
=

jg3ah2 +U4

jg3ah2 −U4
,

Rb = rb e−4g4bh1, rb =
jg4b /k0 +Z0G3

jg4b /k0 −Z0G3
=

jg4bh1 +U3

jg4bh1 −U3
. (58)

The mode amplitudes Am , Ba are defined in the end plane y=−h2 of the entrance
duct, and Dn , Cb are defined in the end plane x= h1 of the exit duct.

The modes in all duct sections i=1 to 4 have the shape of equation (1) with
the profiles of equation (2); they satisfy the wave equation together with equations
(3) and have the characteristic equation (4), and obey the relations (5). Each of
the modes of the sections i=3, 4 satisfies the conditions at the outer boundaries
of the corner area, on one side by their character as section mode, on the other
side by the formulation of the reflection factors. So the third of equations (52)
obeys the boundary conditions at the real limitations of the corner area. The
boundary conditions of field fitting by pressure and axial particle velocity must
still be formulated.
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The boundary condition for the sound pressure in the orifice of duct 1 is

Piq1m (x)+ s
m

Amq1m (x)

=
!

s
a

Baq3a (x)(1+Ra )+ s
b

Cbq4b (−h2)(e+g4b (x− h1) +Rb e−g4b (x− h1)), (59a)

and for the particle velocity

−Pig1mq1m (x)+ s
m

Amg1mq1m (x)

=
!

−s
a

Bag3aq3a (x)(1−Ra )+ s
b

Cbq'4b (−h2)(e+g4b (x− h1) +Rb e−g4b (x− h1)). (59b)

The corresponding boundary conditions in the entrance plane of duct 2 are

s
m

Dnq2n (y)

=
!

s
a

Baq3a (h1)(e−g3a (y+ h2) +Ra e+g3a (y+ h2))+ s
b

Cbq4b (y)(1+Rb ), (60a)

Figure 18. Frequency curves of the loss D=20 lg =pi (0, −h2)/ptm (h1, 0)= of L-joints of lined ducts
according to Figure 1(b), for different states of the corner wall: ——, absorbing; ----, rigid; ·–·–, soft.
h1 = h2 =0·2 m, d1 = d2 =0·1 m, J1 =J2 =10 kPa s/m2.
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Figure 19. Frequency curves of the loss D=20 lg =pi (0, −h2)/ptm (h1, 0)= of L-joints of lined ducts
according to Figure 1(b), for different states of the corner wall and of the exit duct. Other parameters
as Figure 18.

−s
m

Dng2nq2n (y)

=
!

s
a

Baq'3a (h1)(e−g3a (y+ h2) +Ra e+g3a (y+ h2))+ s
b

Cbg4bq4b (y)(1−Rb ). (60b)

Figure 20. Lined ducts with a L-joint and absorbers at both corner walls; fictitious duct segments
i=3, 4; field components of a modal analysis.
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The prime again indicates the derivative with respect to the indicated argument,
here at the indicated place. These are four equations for four sets of amplitudes.
The Am will be eliminated from equations (59a, b) and the Dn from equations
(60a, b). This is possible by the application of the orthogonality integrals with
q1m (x) and q2n (y), respectively, by which procedure the integrals will appear:

Sa,kM
1

2h1 g
h1

−h1

q3a (x)q1k (x) dx=0, a+ k=odd

=
1
2 $sin (o3a − o1k )h1

(o3a − o1k )h1
+ (−1)(a+ k)/2 sin (o3a + o1k )h1

(o3a + o1k )h1 %, a+ k=even, (61a)

Tb,kM
1

2h2 g
h2

−h2

q4b (y)q2k (y) dy=0, b+ k=odd

=
1
2 $sin (o4b − o2k )h2

(o4b − o2k )h2
+ (−1)(b+ k)/2 sin (o4b + o2k )h2

(o4b + o2k )h2 %, b+ k=even. (61b)

The zero value of the integrals for a+ k=odd and b+ k=even, respectively,
follows from symmetry considerations. The special values Sa,k:da,kN1k and
Tb,k:db,kN2k with the norms Nik of the modes in the ducts are important in
numerical computations, when the (fictitious) duct section i=3 has the same
lining as the duct i=1 and when the linings for i=4 and i=2 agree with each
other. Further integrals are

Iab,kM
1

2h1 g
h1

−h1

e+g4bx q1k (x) dx, Ibb,kM
1

2h1 g
h1

−h1

e−g4bx q1k (x) dx, (62a)

IAa,kM
1

2h2 g
h2

−h2

e+g3ay q2k (y) dy, IBa,kM
1

2h2 g
h2

−h2

e−g3ay q2k (y) dy. (62b)

The values of these are given in the previous sections (under different symbols).
By application of

1
2h1 g

h1

−h1

· · · q1k (x) dx (63a)

to both sides of equations (59a, b) one gets

dm,kPiN1m +AkN1k = s
a

Ba (1+Ra )Sa,k + s
b

Cbq4b (−h2)(e−g4bh1Iab,k

+Rb e+g4bh1Ibb,k ), (64a)
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dm,kPig1mh2N1m −Akg1kh2N1k = s
a

Bag3ah2(1−Ra )Sa,k

−jU4 s
b

Cb (−1)bq4b (h2)(e−g4bh1Iab,k +Rb e+g4bh1Ibb,k ), (64b)

and by the application of

1
2h2 g

h2

−h2

· · · q2k (y) dy (63b)

to both sides of equations (60a, b), one obtains

DkN2k = s
a

Baq3a (h1)(e−g3ah2IBa,k +Ra e+g3ah2IAa,k )+ s
b

Cb (1+Rb )Tb,k , (65a)

Dkg2kh1N2k =jU3 s
a

Baq3a (h1)(e−g3ah2IBa,k +Ra e+g3ah2IAa,k )

− s
b

Cbg4bh1(1−Rb )Tb,k . (65b)

The Ak , Dk can be eliminated by multiplication of the first equation in pairs by
g1kh2 or g2kh1 and addition or subtraction of the second equation, respectively. The
result is

s
a

BaSa,k [g3ah2(1−Ra )+ g1kh2(1+Ra )]

+ s
b

Cb (−1)bq4b (h2)(g1kh2 − jU4)(e−g4bh1Iab,k +Rb e+g4bh1Ibb,k )

=2dm,kPig1mh2N1m , (66a)

s
a

Baq3a (h1)(g2kh1 − jU3)(e−g3ah2IBa,k +Ra e+g3ah2IAa,k )

+ s
b

CbTb,k [g4bh1(1−Rb )+ g2kh1(1+Rb )]=0. (66b)

The combination of equations (66a, b) is a linear, inhomogeneous system of
equations (k=0, 1, 2, . . . ) for the combined vector {{Ba}, {Cb}} of the mode
amplitudes in the corner area. After its solution the amplitudes Am can be
computed from equation (64a) and the Dn from equation (65a). Then all fields are
known and the task is solved. In numerical computations all mode orders m, n,
a, b, k may run up to the same limit mhi .
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Figure 21. (a) 3D-plot of the sound pressure level in L-joints of lined ducts according to Figure 20,
at f=1000 Hz; the lining is identical everywhere; to be compared to Figures 11(a) and 12(a). m=0,
mhi =8, h1 = h2 =0·2 m, d1 = d2 = d3 = d4 =0·1 m, J1 =J2 =J3 =J4 =10 kPa s/m2. (b) As (a), but
at f=2000 Hz; the lining is identical everywhere; to be compared to Figures 11(b) and 12(b).
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A ‘‘one-sided’’ modal analysis has been applied on the boundary conditions in
the sense that the operations (63a, b) have been applied on both the pressure and
the velocity conditions. Because the modes in the sections i=3, 4 are orthogonal
also, one can apply a ‘‘two-sided’’ modal analysis in which the operations (63a, b)
are applied to the pressure condition, for example, and similar operations, after
q1k (x):q3k (x) in equation (63a) and q2k (y):q4k (y) in equation (63b), are applied
to the velocity conditions. The amplitudes Am , Dn can also be eliminated after these
operations. Experience shows that the precision of the two-sided modal analysis
in the fitting of the fields is better than with a one-sided analysis; however the price
for the higher precision is more complicated matrix terms in the system of
equations (66) and longer computing times. The two-sided analysis, therefore, is
not demonstrated here.

The amount of computation increases with the analysis of this section compared
to the equations of the former sections for several reasons. First, in the most
general case, four sets of modal solutions must be computed instead of two sets.
Second, the upper limit mhi of the mode orders must be higher; it increases with
the frequency and duct width. A value of mhi =8 will be applied below, which is
sufficient for the applied parameters. Third, even for the same limit mhi , the size
of the system of equations is two times the size of the earlier systems. On the other
hand, a number of simplifications are possible, when the linings of the ducts and/or
sections become identical. So, on average, the computing time with the present

Figure 22. 3D-plot of the sound pressure level in L-joints of lined ducts according to Figure 20,
at f=1000 Hz; the corner walls are rigid. m=0, mhi =8, h1 = h2 =0·2 m, d1 = d2 =0·1 m,
J1 =J2 =10 kPa s/m2.
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Figure 23. 3D-plot of the sound pressure level in L-joints of lined ducts according to Figure 20,
at f=1000 Hz; the corner walls are absorbing. m=0, mhi =8, h1 = h2 =0·2 m, d1 = d2 =0,
d3 = d4 =0·1 m, J3 =J4 =10 kPa s/m2.

analysis is about twice the computing time with the analysis of section 3 and four
times the computing time with the analysis of section 2.

Figures 21(a, b) are counterparts of Figures 11 and 12. If one compares values
of sound pressure levels, it should be taken into account that the amplitude Pi of
the incident wave, to which the levels are referred, is now defined in the orifice
of duct 1, instead of the centre of the corner area as in the former sections.
Therefore, the level contours are now shifted by about −2·2 dB at f=1000 Hz
and by about −0·45 dB at f=2000 Hz. Now the waviness of the standing wave
in the entrance duct is continued into the corner area more steadily, and also the
profile in the x-direction agrees better with the profile of the incident wave. Both
features of the result are plausible. The precision of the field matching in the end
planes is sufficient.

The other 3D-plots of sound pressure levels are concerned with special cases.
The ducts for Figure 22 are both absorbing, but the corner area is rigid on both
sides. The standing wave pattern of the corner area produces a near field in the
exit duct with predominant but quickly decaying higher modes. The transmission
loss of the corner is evidently quite comparable in its value to those in the case
of an absorbing corner area. This is in full contradiction to the initial guess in the
introduction. The opposite situation is illustrated in Figure 23. Now the ducts are
rigid and the corner walls absorbing. In fact, the average level in the corner area
is somewhat reduced, but is still sufficiently high to produce strong, propagating
higher modes in the exit duct, so that the transmission loss is evidently much
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smaller than with an absorbing exit duct. Figure 24 illustrates a modification in
which only the corner wall opposite to the entrance duct is lined with an absorber
(now for f=2000 Hz). Figure 25(a) illustrates well the mechanism for a high
transmission loss of the corner (at f=500 Hz). Now only the exit duct is lined;
the other duct and corner walls are rigid. The field pattern in the y-direction in
the corner area nearly corresponds to a pure anti-symmetrical mode of order n=1
in the exit duct. It is strongly attenuated at 500 Hz. So the profile of the least
attenuated mode in the exit duct appears at a rather low level after a relatively
short near field range. This diagram again clarifies that a high transmission loss
of a duct corner is primarily not a matter of absorption at the corner walls, but
a matter of pattern matching at the entrance of the exit duct. Figure 25(b) repeats
the arrangement of Figure 25(a), but now for a frequency of f=2000 Hz. The
pattern of the corner area is disturbed in the sense that it can no longer be
represented by the pattern of one or a few higher modes of the exit duct, and the
content of the pattern of the fundamental mode of the exit duct is higher.
Therefore, the least attenuated mode ‘‘peels off ’’ from the near field at a higher
level than before.

The last diagram, Figure 26, collects frequency curves of the transmission loss
of a number of conditions of absorption in the ducts and of the corner area. It
shows the role of an absorber at the corner wall opposite the entrance duct: useful
values of the transmission loss begin at lower frequencies with absorption than

Figure 24. 3D-plot of the sound pressure level in L-joints of lined ducts according to Figure 20,
at f=2000 Hz; only the corner wall opposite the entrance duct is absorbing. m=0, mhi =8,
h1 = h2 =0·2 m, d1 = d2 = d3 =0, d4 =0·1 m, J4 =10 kPa s/m2.
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Figure 25. (a) 3D-plot of the sound pressure level in L-joints of lined ducts according to Figure 20,
at f=500 Hz; only the exit duct is absorbing. The standing wave pattern in the corner area
corresponds well to the first higher mode pattern in the exit duct, which is cut off at this frequency.
(b) As (a) but at f=2000 Hz, only the exit duct is absorbing. The field pattern in the corner area
has a higher content of the fundamental mode; the corner loss is smaller. m=0, mhi =8,
h1 = h2 =0·2 m, d1 = d3 = d4 =0, d2 =0·1 m, J2 =10 kPa s/m2.
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Figure 26. Loss D=20 lg =pi (0, −h2)/ptm (h1, 0)= of an L-joint according to Figure 20, with different
states of the corner and of the ducts. h1 = h2 =0·2 m. ——, d1=d2 = d3 = d4 =0·1 m,
J1 =J2 =J3 =J4 =10 kPa s/m2; ----------, d1 = d3 =0, d2 = d4 =0·1 m, J2 =J4 =10 kPa s/m2; ----,
d1 = d2 =0, d3 = d4 =0·1 m, J3 =J4 =10 kPa s/m2; — —, d1 = d2 =0·1 m, J1 =J2 =10 kPa s/m2,
d3 = d4 =0; —-—-–, d1 = d2 = d3 = d4 =0.

without absorption in that place. Rigid walls of the corner area can produce high
attenuation peaks at some frequencies, but they also generate dips of the
transmission loss at other frequencies. Smooth frequency curves of the
transmission loss need absorbing corner walls and a sufficient attenuation in the
exit duct.

The question is, over what length the exit duct should be lined. The general
answer is: until the end of the near field of the higher modes. The diagrams show
that a lined segment with a length of about 2 to 3 times the duct width H2 will
be sufficient in many cases; the design of a length of about 5H2 will be safe in most
cases. Then even the least attenuated mode will produce a negligible feedback on
the corner area when it is reflected after that distance.

5. DERIVED DUCT AND CORNER SHAPES

First, the restriction to two-dimensional ducts is realised. When the duct has the
constant dimension b in the z-direction and constant boundary conditions at the
walls normal to that direction (e.g., rigid), then the incident wave and all fields
and field components will be augmented by a mode profile factor qk (z) which can
be dropped in the computations for the mode amplitudes. The only modification
will be for gik in equation (3). There, an additional term +o2

k will appear if the mode
profile has the shape qk (z)= cos (okz); =sin (okz). With rigid walls normal to the
z-axis the modal wave numbers are okb= kp and okb=(k+1/2)p,
k=0, 1, 2, . . . , for symmetrical and anti-symmetrical waves, respectively. If the
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walls are lined, okb must be computed from the corresponding characteristic
equation.

The computing schemes of the previous sections are applicable not only to
L-joints of ducts. When the modal reflection factors in sections 2 and 4 at G3 are
set to rn =0, then they describe an infinitely long branch of a T-joint in which the
incident wave comes from the side branch. If the reflection factors at G3 in section
3 and at G4 in section 4 are set to rn =0, then one has the analysis for a T-joint
in which now the incident wave comes from the through-going branch. If in section
4 the reflection factors both at G3 and at G4 are assumed to be zero, then a
cross-joint of ducts is described.

As was stated already, the analysis of section 4 is immediately applicable to rigid
ducts. The equations of the earlier sections 2 and 3 can be applied to joints of ducts
having rigid outer duct (and corner) walls. For that, the rigid walls are placed into
the co-ordinate planes, the inner halves of the ducts and of the corner are taken
and the duct modes are restricted to symmetrical shapes (i.e., in our convention
to even orders). It is, however, not possible in general to handle the outer halves
of the ducts and of the corner (with rigid co-ordinate planes) by the theories of
sections 2 and 3. This means that rigid walls at the inner sides of the ducts and
corner cannot be treated by the theories of those sections. The reason is that then
the auxiliary source Vq lies in the extension of a rigid plane. The duct modes, in
which Vq shall be developed, all have zero velocity in that plane; so it is impossible
to apply that development. The plane which contains Vq must be absorbing in
order that the component duct modes for Vq have a finite velocity normal to that
plane.

Finally, it is mentioned—without more detailed discussion—that the schemes of
the previous theories can also be applied to ducts with bulk reacting linings. The
main difference in the analysis will come from the more complicated shape of the
orthogonality relation of modes in ducts with bulk reacting linings. How this
orthogonality relation is applied to boundary conditions in ducts is shown in
reference [12, Vol. III].

6. CONCLUDING REMARKS

The results presented above show that the original idea, according to which the
absorption of sound rays at walls opposite the entrance duct would produce high
transmission losses of a duct corner, must be revised. It is not so much the
absorption at the corner walls which produces the transmission loss, but the higher
mode excitation in the exit duct by pattern matching of the standing wave pattern
in the corner area to the mode patterns in the exit duct. These higher modes must
then be effectively attenuated, which—at high frequencies—requires an absorbing
lining of a certain length of the exit duct. Examples are shown in which rigid corner
walls are combined with high transmission loss values.

The application of the theories presented supposes the availability of a fast
computing program for the generation of sets of modal solutions of the
characteristic equation in lined ducts, which is robust with respect to ‘‘mode
jumping’’. Such algorithms are described in references [12, Vol. III] and [13].
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